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On a mathematical model is studied the dynamic behaviour of an ideally mixed flow reactor 
in which exothermic reaction of the first order takes place, whose rate is affected by heat and mass 
transfer between the external surface of the catalyst particle and the bulk of reaction mixture. 
For study of microstability of steady states of the reactor was used the first Ljapunov method. 
System of non-linear differential equations was transformed into a system of linear homogeneous 
differential equations of the first order with a singular point in the steady state of the reactor 
and the Poincare classification of singular points was applied at the same time. The course of steady­
ing of the reactor regime (macrostability) was studied on trajectories in a phase plane of tem­
perature of the catalyst particle on concentration of the reactant in the reactor, obtained by nu­
merical integration of the system of non-linear differential equations. It was found out that 
with exothermic reactions in steadying of concentration in the reactor can the temperature of the 
catalyst particle approach the steady state by damped oscilations. It was further fo~!t that 
stability of the steady state of the reactor regime depends on ratio of the reactor volume and fhe 
amount of catalyst. From the analysis of stability and from calculations follows that the steady 
state of the reactor regime can be stable even in the case that the steady state of the catalyst 
particle is not stable. 

In catalytic reactions with heat effect there builds up a temperature difference between 
the bulk of the reaction mixture and the external surface of the catalyst particle 
with a magnitude in steady state dependent on concentration of the reactant in the 
bulk of reaction mixture. Since the particle has a certain heat capacity, the temperature 
difference does not equalize at the concentration change of the reactant immediately 
to the steady state value but it is it continuously approaching. Therefore, at changes 
in composition of reaction mixture at steadying of the ideally mixed flow reactor 
the steadying of the particle surface temperature is slightly retarded to the concentra­
tion steadying in the reactor. 

* Part XXIII: This Journal 36, 1639 (1971). 
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This work aims at studying on a mathematic model the phenomena which results 
from this retardation in steadying of the reactor, i.e. to study the dynamic behaviour 
of the reactor. 

Literature dealing with the problem of dynamic behaviour of systems in general is very com­
prehensivel -

7
. Mathematical models describing dynamic behaviour of the system have in majority 

a non-linear character and therefore the study of stability can be in some of the cases rather 
complex and difficult. Basical works on analysis of stability of systems are published by Ljapunov8

• 

Poincare9 and Minorsky19 who applied methods of non-linear mechanics to this problem. 
The mentioned authors approximated the original non-linear model of the system by the linear 
model. Ljapunov8 ,11 has proved that linearization of the model in accordance with dependent 
variables in vicinity of the steady state and a following analysis of the linear model is well-founded 
and that the linearized model satisfactorily describes the given system in the closest vicinity 
of the steady state (the first Ljapunov method). For analysis of the given steady state can be 
then used for example the Poincare classification of singular pOints9,12, the Routh-Hurwitz 
theorem13 etc. . 

The linearized model, however, provides information on dynamic behaviour, resp. on stability 
of the system, only in the closest vicinity of the steady state (microstability). But we are very 
often interested in behaviour of the system farther from the steady state (macrostability). If the 
given system is solved either analytically or numerically. the technique of the phase plane can be 
used, i.e. mapping of the motion trajectories in the plane of dependently variable quantities 
(e.g. in the phase-plane temperature-concentration). Lately, a series of works uses the second 
(direct) Ljapunov method for analysis of stability of the system1 ,5 - 8, 14. 

A number of authors 15 - 18 studied the dynamic behaviour of the ideally mixed flow reactor. 
Summarily elaborated is the whole problem of stability of the ideally mixed flow reactor for 
example in monography by Aris19. The problem of heat and mass transfer effect between the 
external surface of the catalyst particle and the bulk of reaction mixture on dynamic behaviour 
of the ideally mixed flow reactor has not yet been made. 

THEORETICAL 

Mathematical Model 

This work refers to the previous paper20 and for derivation of the model are used 
the same assumptions. It is assumed that the reaction rate is a function of concentra­
tion and of temperature on the surface of the catalyst particle. Calculation is limited 
to reaction of the first order, for temperature dependence of the rate constant of the 
reaction is assumed validity of the Arrhenius equation. Then it holds 

(1) 

For the transfer rate of matter A to the external surface of the particle was used the 
relation 

(2) 

For the rate of heat transfer from the particle surface to the bulk of reaction mixture 
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was used relation 

(3) 

It is assumed that the catalyst particle is non-porous and that it has infinite heat 
conductivity. The temperature inside the particle then equals to the temperature 
on the particle surface. Accumulation of the reactant on the particle surface is ne­
glected. At the mentioned assumptions, the steadying of particle temperature is 
expressed by equation 

(4) 

with boundary conditions 

t = 0, T. = T.,in . (4a) 

For steady state ' 

(dT./dt) = O. (4b) 

If accumulation of reactant on the particle surface is neglected, the rate of chemical 
reaction equals to the rate of diffusion of substance A to the surface and then the 
equality holds 

(5) 

The reactor is considered to be an ideally mixed flow reactor in which a reaction 
without the volume change takes place. The course of steadying of concentration 
in the reactor is then described by equation 

(6) 

with boundary conditions 

t = 0, PA = PA,in . (6a) 

For steady state 

(6b) 

On combining and modifying the mentioned equations was obtained a system 
of non-linear differential equations of the first order whose solution describes the 
course of concentration steadying in the reactor. In the dimensionless form these 
equations can be written 
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(8) 

with boundary conditions 

(8a) 

and for steady state 

(d AT/d,) = 0, (dPA/d,) = o. (8b) 

In Eq. (7) and (8) are the quantities e, <Pm' Qm, Oa, and B defined by relations 

e = E/RgT, <Pm = rom/kgamPAm, Qm = ( -AH) kgPAm/khT , 

(9, 9a, 9b) 

(9c) 

(9d) 

The system of differential equations (7) and (8) was in this work solved numerically 
by the Runge-Kutta-method (Merson's modification) on the digital computer 
Elliott 4120. Initial values of quantities AT and PA were chosen and integrated as 
long as these quantities remained constant. Separatrix of this system of equations 
was determined by integration with negative time, with initial values of quantities 
ATand P A close to that in steady state. 

Analysis of Stability of Steady States of the Reactor 

For study of micro stability of the regime of an ideally mixed flow reactor, i.e. stability 
of the regime in the closest vicinity of the steady state, can be used the first Lja­
punov l

-
4 ,8 ,11,18 method combined with the Poincare classification of singular points 

(of steady states)l,3,9,12,18. The first Ljapunov method is based on the perturba­
tion 1 method. Dependent variables AT and P A and the quantity Rf3 is expressed 
as a function of small perturbations (deviations) from values of these quantities 
corresponding to the steady state: 
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P A = PAu + tlP~, tlT = tlTu + tlT', Rf3 = Rf3u + tlRf3 

Rf3' = (PA - cPmRf3) exp [8 tlTj(1 + tlT)] , 

Rf3u= (PAU - cPm Rf3u) exp [8 tl7;,j(1 + tlTu)] , 

tlRf3 = (aRf3jaPA)I~T , u tlP~ + (aRf3ja tlT)lpA'U tlT' . 

(10, lOa, 11) 

(11a) 

(11 b) 

(lle) 

In Eq. (11 e) can be substituted for values of partial derivations the relations obtained 
by derivation of Eq. (11a). On combining relations (7), (8), (11), and (Ue) a system 
of linear differential equations of the first order can be obtained 

where Xl to X 4 are constants defined by relations 

(12) 

(13) 

X3 = -Rf3uDa8(1 - Rf3ucPmjPAu)(1 + Rf3ucPmQmt 2
, (14b) 

X 4 = -1 - DaRf3ujPAU' (i4c) 

The system of Eq. (12) and (13) can in general be solved3
,4 with a characteristic 

equation of the form 

(15) 

where (X1,2((X1 =1= (X2) are the roots of the characteristic equation. By using the Poincare 
classification we can now decide about the stability of stationary solutions of the 
system of equations (12) and (13) and divide them in agreement with values (X1,2 

into solutions of the type: node, focus, saddle and centre. As we deal with linear 
approximation of non-linear problem, we will no more consider the solution of the 
centre-type. Characteristics of particular types of stationary solutions are given 
in Table I. 

On substituting of relations (14) to (14e) into definition relations for quantities 
S, D, and Q we obtain 
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TABLE I 

Characteristics of Stationary Solutions of the System of Equations (I2) and (I3) by Use of Poincare 
Classification 

--- - ----

Type of solution S D Q Stability 

Saddle > 0 unstable 
Node <0 ~O < 0 stable 

> 0 unstable 
Focus < 0 < 0 stable 

< 0 > 0 unstable 

(16) 

D = [RPuBBDa(1 - RPuclJm/PAu) (1 + R{3uclJmQmt2 - (BDa/rPmQm) + 1 + 

+ DaR{3u/PAu]2 - 4BDa2R{3~B(1 - R{3urPm/PAu) (1 + R{3uclJmQrnt2jPAu, 

(16a) 

(16b) 

RESULTS AND DISCUSSION 

Analysis of Dependence of Curves Describing the Steady States of the Catalyst 
Particle and Steady States oftheIdeally Mixed Flow Reactor 

If the catalyst particle is in a steady state, the dependence of relative reaction rate 
on relative partial pressure of the reactant in bulk of the reaction mixture is described 
by curve which is further denoted as curve R{3u (Eq. (lIb)) 20. If the mass and heat 
transfer effect between the external surface of the catalyst particle and the bulk 
of the reaction mixture (effect of the external mass and heat transfer) is eliminated 
for the first order reaction the curve R{3u is a straight line with the slope equal to one 
passing through th~ origin. Due to imperfect external mass and heat transfer there 
form, between the particle surface and bulk of the reaction mixture, concentration 
and temperature differences which are altering the dependence of relative reaction 
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rate on relative partial pressure of the reactant. The effect of external mass and heat 
transfer and of temperature on the relative reaction rate is dependent on values 
of parameters rpm, Qm, and of constant e. Physical meaning of these parameters was 
discussed in previous papers20. Constant e is a dimensionless activation energy 
and it characterizes the sensibility of the rate constant to temperature changes. 
Parameter Qm is the highest temperature difference which can build up between the 
particle surface and bulk of the reaction mixture divided by temperature of bulk of the 
reaction mixture. Parameter rpm determines the position of the system between the 
kinetic and diffusion regions. 

In exothermic reactions is the reaction rate increasing due to imperfect heat transfer 
as compared to the rate' in kinetic region. According to values of the discussed para­
meters, is the curve RfJu a smooth one with an in flex point, or in a certain region 
of the discussed parameters in strongly exothermic reactions a curve on which in a cer­
tain region of partial pressures of reactant there correspond to a single value of partial 
pressure three values of a dimensionless reaction rate (Fig. 1 and 2). In the second 
case there correspond to a single value of partial pressure three states of the particle. 
As it was indicated in previous papers, the states with the highest and lowest reac­
tion rates are stable, as concerns the particle catalyst, with the state at the mean 
value of the reaction rate unstable. For definition of conditions of existence of three 
steady states it is more advantageous to work with an inversion function P A = P A(RfJ) 
because this function is a smooth one. From the graphical plot follows that the steady 
state of the particle is, as concerns the particle, unstable, when 

(17) 
- ' ......... 

In the region of partial pressures in which this condition can be fulfilled, exist three 
steady states of the catalyst particle at a single value of partial pressure. 

To keep the ideally mixed flow reactor in a steady state, the following condition 
(Eq. (6)) must be fulfilled 

(18) 

In the coordinate axes RfJ and PAis this condition fulfilled in points situated on the 
straight line passing through the point (p A = P AO' RfJ = 0) with the slope Da- 1 

(this line will be hereinafter called the operating line of the reactor). If a catalytic 
reaction takes place in the ideally mixed flow reactor which is affected by the ex-' 
ternal mass and heat transfer, then in the steady state must be fulfilled the condition 
of a steady state both as concerns the catalyst particle as well as the reactor. The steady 
states of the system are therefore in the coordinates RfJ and P A determined by the point 
of intersection of the operating line of the rector with the curve RfJu' When we assume 
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that the particle is in a steady state and that consequently the particle state moves 
along the curve RfJu, the criterion of stability of the steady state can be formally 
applied as concerns the reactor (concentration stability of the reactor). The steady 
state is as concerns the reactor stable in the case for which the condition is fulfilled 

(19) 

The so defined stability will be further on called the stability as concerns the reactor 
and will be distinguished from the stability as concerns the whole system. The stability 
as concerns the system includes both effects of reactor properties and of the catalyst 
particle. 

According to the shape and position of curve RfJu with regard to initial partial 
pressure P AO and according to the value Da can be the condition of steady state of the 
system fulfilled either in one or in three points. In three points it is fulfilled when the 
inequality holds 

(20) 

The steady states may be of three types, i.e. ·the stable state as concerns the reactor 
as well as the catalyst particle (A) , the unstable state as concerns the particle and un­
stable as concerns the reactor (B) , and the unstable state as concerns the particle and 
stable as concerns the reactor (C). In all five different cases can occure and they are 
given in Table II. For simplification the both cases and the steady state are represented 
by numbers and letters which are further used in the discussion. 

The aim of this analysis was to determine how a system behaves in particular 
cases at a dynamic process, i.e. to determine which of the steady states are stable 
as concerns the whole system and also what determines one of several possible 
steady states into which the systems comes. As a dynamic process is considered such 
process which takes place at a constant temperature in the reactor, constant partial 
pressure of the reactant at the reactor inlet and constant value of Da, when a certain 
initial temperature of the catalyst particle (A1in) and a certain initial partial pressure 
(p A, in) in the reactor are set. 

Analysis of Limiting Cases of Dy namic Behaviour of the System 

The course of dynamic processes can be followed by temperature changes of the 
catalyst particle, partial pressure of the reactant in the reactor, and the reaction rate. 
For recording the course of changes of the mentioned quantities it is advisable 
to use trajectories in the phase-plane RfJ on P A' as well as of ATjif>mQm on P A- The 
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coordinate ~TlcpmQm has been used instead of coordinate ~Tbecause in the steady 
state is valid the relation 

(21) 

In the used coordinates is therefore the curve R/3u identical with the curve ~Tu/cpmQm' 
This means that also the position of steady states is in both coordinate systems identi­
cal. 

The course of dynamic changes of the reactor state and of the catalyst particle 
is in the dynamic process dependent on ratio of rate of temperature change of the 
catalyst particle to the rate of concentration change in the reactor. This ratio is 
affected by ratio of the particle heat capacity to the mass capacity of the reactor. 
Quantities which affect the ratio of these capacities are included in the parameter 
B (Eq. (9d)), which can be interpreted as the ratio of heat which would have been 
evolved by conversion of the reactant present in the reactor at its standard partial 
pressure to the heat accumulated in the catalyst at temperature of the bulk phase. 
The value of parameter B can be in practice varied by changing the ratio of the reactor 
volume to the amount of catalyst. To the limiting value of parameter B correspond 
two limiting cases of dynamic behaviour of the reactor. For B =:= 00 the reactor 
capacity is by far higher than the capacity of the catalyst particle. Therefore, at any 
dynamic process, the particle passes at first immediatelly into the steady state without 
a composition change of the reaction mixture in the reactor, i.e. into the steady 
state which corresponds to the initial partial pressure in the reactor. Changes of partial 
pressure in the reactor then take place at the steady state of the particle. The course 
of changes at the dynamic process is in both coordinate systems expressed by ideo,tical 
trajectory (Fig. 1 and 2). The particle state passes first into the steady state alo"ug 
the curve P A = const. = P A,in to the curve RBu, which is identical with the curve 
~TlcpmQm' Along this curve then moves the state of the system into its steady state. 
Direction of the motion along the curve RBu is determined by mutual position of the 
point in respect to the operating line of the reactor. If the point is situated below' 
the operating line of the reactor, the state of the system moves toward higher values 
of partial pressure in the reactor, if it is situated above it then the stale of the system 
moves toward lower values of partial pressure. In case that exist two steady stotes which 
are stable both as concerns the reactor and the particle (case III) than the state into 
which the system comes is determined by the initial particle temperature and by the 
initial partial pressure of the reactant in the reactor. The separatrix (line in the phase­
plane which separates the "correspondence of trajectories" to particular steady 
states) separating the regions of two stable steady states is formed by part of the 
curve R/3u, respectively by ~Tu/cpmQm on which are situated steady states unstable 
as Goncerns the particle (Fig. 2). In cases II and V when exists only a single steady 
state of the system which is unstable. as concerns the particle,and stable as concerns 
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the reactor, or when exist three steady states of the system, all unstable as concerns 
the particle, the reactor works in the limiting cycle whose trajectory is in both co­
ordinate systems identical and independent on the value of Damkohler number Da 
(Fig. 1 and 2). In case IV when three steady states exist from which only one is 
stable as concerns the particle, the system always steadies in this state (Fig. 1). 

In the second limiting case (B = 0), the capacity of the reactor is far smaller than 
the capacity of the catalyst particle. At the dynamic process therefore first changes 
the partial pressure in the reactor to the value corresponding to the steady state as 
concerns the reactor without a change in temperature of the particle. This rapid 
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FIG. 1 

Effect of External Heat and Mass Transfer 
on First Order Reaction in a Flow, Perfectly 
Mixed Reactor 

e = 20·42, ([lm = 0·061, ilm = 0·5165, 
P AO = 1 (case I and ll), P AO = 0·78 (case 
IV). 

Dashed line denotes steady states stable 
as concerns the catalyst particle, dash and 
dot the separatrix, black points with arrow 
denote the steady state in which the system 
steadies in the given region limited by the 
separatrix for B = 0, empty points with ar­
row for B = CIJ, other symbols used are the 
same as that in Table II. 1 dependence RPu , 

resp. !.1Tu/([lmilm on P A; 2 B = CIJ; 3 B = 0 
in coordinates !.1T/([lmilm on P A; 4 B = 0 in 
coordinates RP on P A. 
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FIG. 2 

Effect of External Heat and Mass Transfer 
on First Order Reaction in a Flow, Perfectly 
Mixed Reactor 

P AO = 0·75 (case Ill), resp. P AO = 0·825 
(case V): other symbols used are the same as 
that in Fig. I . 
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change can be expressed in coordinates Rf3 on P A as a quick motion from the initial 
point along the isothermal line to the operating line of the reactor. The isotherms 
describe the dependence of reaction rate on partial pressure of the reactant in the 
reactor at constant temperature of the catalyst particle. For the first order reaction 
the isotherms form a family of lines passing through the origin and are defined 
by Eq. (lla) for the case Ts = const. After reaching the operating line of the reactor, 
the state of the system moves slowly along the operating line toward the steady 
state. The motion direction is determined by position of the point in respect to the 
curve Rf3u' If the point lies on the operating line of the reactor below the branch 
of curve Rf3u denoting the stable states as concerns the particle or below the branch 
denoting stable states of the particle and, simultaneously, above the branch denoting 
unstable states of the particle, then it moves toward the lower partial pressure. 
If it lies below the branch denoting stable states of the particle or, simultaneously, 
above the branch denoting unstable states of the particle, it moves in direction of the 
higher partial pressure. 

It follows from the results that in the discussed limiting case the state of the system 
cannot in any way move along the limiting cycle. States which are unstable as con­
cerns the particle and stable as concerns the reactor, behave in the system as stable. 
Therefore, there can occur only two cases, i.e. either there exists only a single stable 

oos.--.----,-----~---.------_. 

----!...------- --

Rn, 

FIG. 3 

Boundaries of Values of Parameter B Sepa­
rating the Stability and Instability Regions 
[Eq. (22)] 

Da = 0,0432, P AO = 0'825; Solid line 
denotes the dependence defined by Eq. (23), 
dashed line the one defined by Eq. (22). 
1 B = 50, 2 B = 10, 3 B = 5, 4 B = 3. 

FIG. 4 

Effect of Value of Parameter B on the Charac­
ter of Steady State 

Da = 0·0432, P AO = 0·825; Dashed and 
dash and dot lines denote the upper and lower 
limits of dependences defined by Eq.(24), other 
symbols used are the same as that in Fig. 3. 
1 B= 50, 2B= 10, 3B= 2. 
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steady state or there exist two stable steady states. In the case of two steady states, 
the separatrix separating their regions in coordinates Rf3 on PAis an isotherm passing 
through the middle state which is unstable both as concerns the reactor as well as the 
particle. In coordinates LJTjlPmQm is the separatrix determined by the isothermal line 
passing through this middle unstable state. It is obvious that only the initial particle 
temperature determines into which of the two possible stable steady states the regime 
of the system moves in the dynamic process. ]f the particle temperature is at the 
beginning of the dynamic process higher than corresponds to the separatrix, the sys­
tem moves to the upper steady state, if it is lower, the system moves to the lower 
steady state. 

From comparisons of both limiting cases follows that the parameter B characteri­
zing the ratio of the reactor capacity to the particle capacity can significantly affect 
the behaviour of the system. First, some of steady states can behave, according to value 
of this parameter, as stable or as unstable, and further, in certain regions of initial 
particle temperature and of initial partial pressure the course of separatrix separating 
the regions of two stable steady states can be dependent on parameter B. Diagram 
of regions pertaining to individual steady states is given in Fig. 1 and 2. 
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FIG. 5 

Course of Temperature Steadying of Cata­
lyst Particle and of Partial Pressure of the 
Reactant in Reactor for Case I (diffusion 
branch) 

Da = 0,0391, P AO = 1. Dashed line de­
notes the dependence of I1Tu on P A' 1 B = 
= 0'8, 2 B = 1,3 B = 50. 

Collection Czechoslov. Chem. Commun. IVoI. 36/ (1971) 

03 0-9 
IIT.- - I--- ~ -- -----

llT P. 

02 
!1~ __ 07 

05 

0-3 

FIG. 6 

Course of Temperature Steadying of Cata­
lyst Particle and of Partial Pressure of Re­
actant in Reactor for the Case Given in 
Fig. 5 

1 B = 1, 2B= 50. 
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Analysis of Microstability of Steady States as Concerns the System 

For analysis of the system behaviour was used the Poincare classification of singular 
points. The list of criterions used for the classification is given in Table 1. From the 
analysis were made the following conclusions: The steady state to be stable, the ine­
quality Q < 0 must hold, which can be transformed into relation 

where the value of derivation on the left side of equation is determined by relation 

(23) 

The right-hand term of inequality (22) is always negative. From its comparison with 
the condition of stability of the catalyst particle (Eq. (17)) follows that the stability 
condition is always fulfilled when the steady state is stable as concerns the particle 
(state A (Fig. 3)). The steady states stable as concerns the particle are consequently 
stable for reactions of first order also as concerns the system. These stable steady 
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FIG. 7 

.Course of Temperature Steadying of Cata­
lyst Particle and of Partial Pressure of Reac­
tant in Reactor for Case II 

Da = 0,0852, P AO = 1. 1 B = 0'1, 2 B = 
= 2, 3 B = 10, 4 B = 500; other symbols 
used are the same as that in Fig. 5. 
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FIG. 8 

Course of Temperature Steadying of Catalyst 
Particle and of Partial Pressure of Reactant 
in Reactor for Case II 

Da = 0'0769, PAO = 1. 1 B= 0'1, 2 B = 
= 2, 3 B = 5, 4 B = 500; other symbols 
used are the same as that in Fig. 5. 
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states (A) can either be stable points of junction or stable foci according to value 
of quantity D (Table I). Steady state is the point of junction when holds the relation 

TABLE II 

Summary of Possible Stability Cases in a Flow, Perfectly Mixed Reactor with Significant Effect 
of External Heat and Mass Transfer 

Case Number State 
symbol of states (No) 

I A (1) 

II II C (I) 

III III A (2) 
III B (1) 

IV IV A (I) 
IV B (1) 
IV C (1) 

V VB (1) 
V C (2) 

P,. 

FIG. 9 

Course of Temperature Steadying of Cata­
lyst Particle and of Partial Pressure of Reac­
tant in Reactor for Case of the Limiting 
Cycle (Fig. 7) for B = 10 
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Stability 

particle reactor 

stable stable 
unstable stable 
stable stable 
unstable unstable 
stable stable 
unstable unstable 
unstable stable 
unstable unstable 
,unstable stable 
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FIG. 10 

Fig. 
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Course of Temperature Steadying of Cata­
lyst Particle and of Partial Pressure of Reac­
tant in Reactor for the Case of Stable Focus 
(Fig. 7) for B = 2 
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{l - e + 2[e(b - 1)]1/2}/ab ~ (aPA/aRp)lu ~ {I - e - 2[e(b - 1)J1/2}/ab, 
(24) 

where 
a = RPu/P Au = (p AO - P Au)/DaP Au' 

b = BDa/<PmQm, 

(25) 

(25a) 

(25b) e = RPuDa/P Au = (p AO - P AU)/P Au' 

The dynamic characteristics in parameter B are determining whether the steady 
state is the point of node or the focus. In limiting cases B = 0 and B = 00 is the 
state always the point of junction; it can be the focus in case the steadying rate of the 
reactor is commensurable with the steadying rate of the catalyst particle. Examples 
of the effect of value of parameter B on character of the steady state are given in Fig. 4. 
Steady states (A), i.e. stable states as concerns the particle will not be considered 
in the following discussion, it concerns only states unstable as concerns the particle. 

If the steady state is a saddle, it is always unstable as concerns the system and it is 
situated on the separatrix. Condition of existence of a saddle S > 0 can be transformed 
into relation 

FIG. 11 

Course of Temperature Steadying of Catalyst 
Particle and of Partial Pressure of Reactant 
in Reactor for Case III 

Da = 0'0209, P AO = 0·75; Dashed line 
denotes the dependence of I!:.Tu on P A' dash 
and dot line the separatrix. 1 B = 0, 2 B = 00 , 

3 B= 1·55. 

(26) 

FIG. 12 

Course of Temperature Steadying of Cata­
lyst Particle and of Partial Pressure of Re­
actant in Reactor for Case III 

1 B = 0, 2 B = 00 , 3 B = 9, 4 B = 50; 
other symbols used are the same as that in 
Fig. Ii. 
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FIG. 13 
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Course of Temperature Steadying of Cata­
lyst Particle and of Partial Pressure of Re­
actant in Reactor for Case IV 

Da = 0·03227, P AO = 0·78. 1 B = 0, 2 
B = co, 3 B = 10, 4 B = 50; other symbols 
used are the same as that in Fig. 11. 
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FIG. 15 

Course of Temperature Steadying of Cata­
lyst Particle and of Partial Pressure of Re­
actant in Reactor for Case V 

Da = 0'0432, PAo =O'825; 1 B=10, 2 B = 
= 50; other symbols used are the same as 
that in Fig. 5. 
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FIG. 14 

Course of Temperature Steadying of Cata­
lyst Particle and of Partial Pressure of Re­
actant in Reactor for Case I V 

1 B = 0, 2 B = co, 3 B = 3; other sym­
bols used are the same as that in Fig. 11. 
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FIG. 16 

Course of Temperature Steadying of Cata­
lyst Particle and of Partial Pressure of Re­
actant in Reactor for Case V 

1 B = 0, 2 B = 2; other symbols used 
are the same as that in Fig. 11 . 
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From comparison of this relation with the condition of existence of three steady 
states (Eq. (20)) follows that the steady state is the saddle always and only when it is 
situated on the part of curve RPu determining unstable states as concerns the particle 
and when it is simultaneously the middle one of the three steady states. These middle 
steady states which are unstable as concerns the particle as well as the reactor (points 
B) are therefore always unstable also as concerns the system. Points (B) are not con­
sidered in the further discussion. 

The most interesting behaviour of the system can be anticipated in steady states 
which are unstable as concerns the particle and stable as concerns the reactor (points 
C). These steady states can be either the stable point of node or stable focus according 
to the magnitude of parameter B. Behaviour of the system in these states is dependent 
on the ratio of heat capacity of the catalyst particle to the mass capacity of the reactor 
and it can be considerably affected for inst. iJy the change in ratio of the catalyst 
amount to the reactor volume. Stability of the system in these states is affected by two 
opposite dynamic pr()<.:esses, i.e. by unstable dynamic behaviour of the particle and, 
by stable dynamic behaviour of the reactor. From results of evaluation the conclusion 
is made that dynamic properties of that process which is faster have the prevailing 
effect on stability of the system. It means that the reduction of the reactor volume 
or increase of the amount of catalyst which relatively speeds up the steadying of con": 
centration in the reactor, leads to stabilization of the steady state and, vice versa, 
increase of the reactor volume or reduction of the catalyst amount which relatively 
speeds up the steadying of the particle temperature, leads to instability of the steady 
state. Boundary of values of parameter B which separates the regions of stability 
from instability, is dependent on values of parameters e, IPm' Qm' i.e. on properties 
of the reaction and hydrodynamic conditions and on the position of the steaa.Y .l!tate 
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FIG. 17 

Course of Temperature Steadying of Cata­
lyst Particle and of Partial Pressure of Re­
actant in Reactor for Case V 

1 B = 0, 2 B = 3; other symbols used 
are the same as that in Fig. 11. 
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on the curve Rf3u' For the steady state it is the more difficult to reach stability the 
farther it is on the curve Rf3u from the 'branch denoting steady stable states as con­
cerns the catalyst particle. On value of parameter B dependes also whether the 
steady state is the point of node or the focus. The conclusion of an analysis is in 
agreement with conclusion for points stable as concerns the particle. For the steady 
state to behave as a focus the capacities of the reactor and of the particle must be 
comparable. It means that the rate of changes of the particle temperature must be 
commensurable with the rate of concentration changes in the reactor. Therefore 
for small values of parameter B is the steady state an unstable point of node and with 
increasing value of parameter B it passes successively into unstable focus, stable 
focus and stable point of junction. 

Examples of Courses of Temperature Steadying of Catalyst Particle and of Reactant Con­
centration in the Reactor 

Examples of the course of steadying were obtained by integration of the system of equations (7) 
and (8) at the assumption that at steadying the temperature of the flowing reaction mixture 
and the value of Damkohler number Da do not change. Results of calculation are given by the 
course of trajectories in the phase plane !:J.T on P A' and by dependences of the catalyst particle 
temperature and of partial pressure of the reactant in the reactor on the dimensionless time. 
The numbering of examples is identical with the one used in Table II. 

Case I. A single steady state exists which is always stable. Dependence of the particle tempera­
ture and partial pressure in the reactor is, usually, a smooth curve or a curve with only one 
extreme. Only exceptionally, the state approaches the steady state by damped oscillatons whose 
amplitud.; is small and which are strongly damped (Fig. 5 and 6). 

Case II. There exists a single steady state stable as concerns the reactor and unstable as con­
cerns the particle. If the particle state steadies more quickly (large value of parameter B), the 
state of the system moves along the limiting cycle whose shape and magnitude are dependent 
on the value of parameter B. The limiting cycle always passes in vicinity of points in which 
(ap AI a !:J.Tu) = 0, because in vicinity of these points the particle state changes very slowly2o. 
With the decrease of value of parameter B this state becomes the stable focus. The system ap­
proaches this foxus by damped oscillations. Damping of oscillations is dependent on the position 
of steady state on the curve RfJu and is the bigger the closer is the point to the parts of the curve 
characterizing states stable as concerns the particle. At low values of parameter B the steady 
state behaves like stable point of junction (Fig. 7 to 10). 

Case III. There exist two always stable states and one state always unstable. Stable states 
are, with regard to the value of parameter B, either the point of node (Fig. I I) or the focus (Fig. 12) 
Their behaviour is similar to that of case I. On the value of parameter B is dependent also the 
separatrix separating regions of individual states . 

Case IV. There exists one state always stable (lower state), one state always unstable (middle 
state) and one state with the stability dependent on magnitude of parameter B. If the particle state 
steadies rapidly (value of B is large) it is unstable as concerns the system and the separatrix 
starts from this state. The state of the system always passes to the lower sta te (Fig. 13). If the 
partial pressure in the reactor steadies rapidly (value of B is small) this state is stable as concerns 
the system (Fig. 14). 
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Case V. There exists one steady state always unstable and two states (lower and upper) with the 
stability dependent on value of parameter B. If the particle state steadies more rapidly than the 
partial pressure in the reactor (value of parameter B is large) the states are unstable as concerns 
the system and the state of the system moves along the limiting cycle encircling all three steady 
states. Form of the cycle depends on value of the parameter B (Fig. 15). By reducing value of para­
meter B the lower and upper steady states become stable as concerns the system (Fig. 16). The 
separatrix can, however, sometimes have such a form that it is possible to reach the upper 
steady state only from a narrow region of initial conditions (Fig. 17). This region widens with 
the decrease of value of parameter B. 

LIST OF SYMBOLS 

quantity defined by Eq. (25) 
am external surface of catalyst particle in unit of mass 
b quantity defined by Eq. (250) 
B parameter defined by Eq. (9d) 

quantity defined by Eq. (25b) 

cpk specific heat of catalyst 
D = (XI - X4)2 + 4X2 X 3 dimensionless quantity 
Da Damkohler number Eq . (9c) 
E activation energy of reaction 
F volumetric flow rate of feed into reactor 
k rate constant of reaction 
ko rate constant of reaction at temperature T 
kg mas~ transfer coefficient 
kh heat transfer coefficient 

partial pressure of reactant in bulk of reaction mixture 
P Am standard partial pressure of reactant in bulk of reaction mixture 
P AO partial pressure of reactant in feed into reactor 
P As partial pressure of reactant on surface of catalyst particle 
P A = PA/PAm relative partial pressure of reactant 
P AO = P AO/ PAm relative partial pressure of reactant in feed into reactor 
Q = XI + X4 dimensionless quantity 

reaction rate at temperature T at conditions when is eliminated effect of exter-
nal heat and mass transfer 

"Om reaction rate 1'0 related to partial pressure PAm 
I'D rate of mass transfer [Eq. (2)] 
I'h rate of heat transfer [Eq. (3)] 
rR reaction rate [Eq. (l)] 
R = rR/rO effectivenes factor of external heat and mass transfer 
Rg gas constant 
S = X 2X 3 - X 1X4 dimensionless quantity 

time 
T temperature of bulk of reaction mixture 
Ts temperature of catalyst particle surface 
V volume of reactor 
W weight of catalyst 
XI' X2, X 3, X4 constants defined by Eq. (14) to (l4c) 

root of characteristic equation (15) 
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p = ro/rom dimensionless quantity 
tlH enthalpy of reaction 
tlP A quantity defined by Eq . (10) 
tlT = (Ts - n/T temperature difference 
tlT' quantity defined by Eq. (lOa) 
tlRP quantity defined by Eq. (11) 

e = E/ Rg T constant 
, = t F/ V dimensionless time 
<Pm parameter defined by Eq . (9a) 
Q m parameter defined by Eq. (9b) 

Subscripts 

in initial value of quantity at the beginning of dynamic operation 
value of quantity in steady state 
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